教学文章 | 试题课件下载 | 范文中心 | 作文网 | 在线阅读 | 名言语录 | 设为首页 | 收藏本站
首页试题下载 全册教案 免费课件 说课稿 教学计划 资格考试 主题班会 幼儿教育 作文大全 经典语句 学生评语 范文大全
板报设计| 歇后语| 对联大全| 谜语大全| 名著阅读| 文言文| 诗词鉴赏| 在线字典| 成语大全| 幼儿教师| 早期教育| 少儿故事| 育儿知识

热门搜索: 教师考试 教案文章 教学总结 高考语文 高考数学

当前位置:教学无忧网教学文章免费教案数学教案初二数学教案二次根式的化简

二次根式的化简

03-06 17:26:12 | www.jiaoxue51.com | 初二数学教案 | 人气:743

二次根式的化简是关于 初二数学教案,方面的资料,本站还有更多关于八年级数学教案,八年级数学下册教案,八年级数学上册教案方面的资料,http://www.jiaoxue51.com。

教学建议

  知识结构

.

  重难点分析

  本节的重点是 的化简.本章自始至终围绕着二次根式的化简与计算进行,而 的化简不但涉及到前面学习过的算术平方根、二次根式等概念与二次根式的运算性质,还要牵涉到绝对值以及各种非负数、因式分解等知识,在应用中常常需要对字母进行分类讨论.

  本节的难点是正确理解与应用公式

.

  这个公式的表达形式对学生来说,比较生疏,而实际运用时,则要牵涉到对字母取值范围的讨论,学生往往容易出现错误.

  教法建议

  1.性质的引入方法很多,以下2种比较常用:

  (1)设计问题引导启发:由设计的问题

  1) 、 、 各等于什么?

  2) 、 、 各等于什么?

  启发、引导学生猜想出

  (2)从算术平方根的意义引入.

  2.性质的巩固有两个方面需要注意:

  (1)注意与性质 进行对比,可出几道类型不同的题进行比较;

  (2)学生初次接触这种形式的表示方式,在教学时要注意细分层次加以巩固,如单个数字,单个字母,单项式,可进行因式分解的多项式,等等.

(第1课时)

  一、教学目标

  1.掌握二次根式的性质

  

  2.能够利用二次根式的性质化简二次根式

  3.通过本节的学习渗透分类讨论的数学思想和方法

  二、教学设计

  对比、归纳、总结

  三、重点和难点

  1.重点:理解并掌握二次根式的性质

  2.难点:理解式子

www.jiaoxue51.com中的 可以取任意实数,并能根据字母的取值范围正确地化简有关的二次根式.

  四、课时安排

  1课时

  五、教具学具准备

  投影仪、胶片、多媒体

  六、师生互动活动设计

  复习对比,归纳整理,应用提高,以学生活动为主

  七、教学过程

  一、导入新课

  我们知道,式子 ( )表示非负数 的算术平方根.

  问:式子 的意义是什么?被开方数中的 表示的是什么数?

  答:式子 表示非负数 的算术平方根,即 ,且 ,从而 可以取任意实数.

  二、新课

  计算下列各题,并回答以下问题:

  (1) ;   (2) ;   (3) ;

  (4) ;  (5) ; (6)

  (7) ; (8)

www.jiaoxue51.com

  1.各小题中被开方数的幂的底数都是什么数?

  2.各小题的结果和相应的被开方数的幂的底数有什么关系?

  3.用字母 表示被开方数的幂的底数,将有怎样的结论?并用语言叙述你的结论.

  答:

  (1) ; (2) ; (3) ;

  (4) ; (5) ; (6)

  (7) ; (8) .

  1.(1),(2),(3)各题中的被开方数的幂的底数都是正数;(4),(5),(6),(7)各题中的被开方数的幂的底数都是负数;(8)题被开方数的幂的底数是0.

  2.(1),(2),(3),(8)各题的计算结果和相应的被开方数的幂的底数都分别相等;(4),(5),(6),(7)各题的计算结果和相应的被开方数的幂的底数分别互为相反数.

  3.用字母 表示(1),(2),(3),(8)各题中被开方数的幂的底数,有

 ( ),

  用字母 表示(4),(5),(6),(7)各题中被开方数的幂的底数,有

 ( ).

  一个非负数的平方的算术平方根,等于这个非负数本身;一个负数的平方的算术平方根,等于这个负数的相反数.

  问:请把上述讨论结论,用一个式子表示.(注意表示条件和结论)

  答:

  请同学回忆实数的绝对值的代数意义,它和上述二次根式的性质有什么联系?

  答:

www.jiaoxue51.com

  填空:

  1.当 _________时, ;

  2.当 时, ,当 时, ;

  3.若 ,则 ________;

  4.当 时, .

  答:

  1.当 时, ;

  2.当 时, ,

   当 时, ;

  3.若 ,则 ;

  4.当 时,

www.jiaoxue51.com.

  例1  化简   ( ).

  分析:可以利用积的算术平方根的性质及二次根式的性质化简.

  解  ,因为 ,所以 ,所以

  指出:在化简和运算过程中,把 先写成 ,再根据已知条件中 的取值范围,确定其结果.

  例2  化简   ( ).

  分析:根据二次根式的性质,当 时, .

  解   .

  例3  化简:(1) ( ); (2)  ( ).

  分析:根据二次根式的性质,当

www.jiaoxue51.com时, .

  解  (1) .

    (2) .

  注意:(1)题中的被开方数 ,因为 ,所以 .

  (2)题中的被开方数 ,因为 ,所以 .

  这里 的取值范围,在已知条件中没有直接给出,但可以由已知条件分析而得出.

  例4  化简 .

  分析:根据二次根式的性质,有

  所以要比较 与3及1与 的大小以确定 及 的符号,然后再进行化简.

  解  因为 , ,所以

www.jiaoxue51.com, .

  所以

    .

  三、课堂练习

  1.求下列各式的值:

  (1) ;  (2) .

  2.化简:

  (1) ;  (2) ;

  (3) ( ); (4)  ( ).

  3.化简:

  (1) ;    (2) ;

  (3) ;  (4) ;

  (5) ; (6) ( ).

  答案:

  1.(1)0.1; (2) .

  2.(1)

www.jiaoxue51.com; (2) ; (3) ; (4) .

  3.(1)4; (2)1.5; (3)0.09; (4)-1; (5)4; (6)-1.

  四、小结

  1.二次根式 的意义是 ,所以 ,因此 ,其中 可以取任意实数.

  2.化简形如 的二次根式,首先可把 写成 的形式,再根据已知条件中字母 的取值范围,确定其结果.

  3.在化简中,注意运用题设中的隐含条件,如二次根式 有意义的条件是被开方 ,这是隐含条件.

  五、作业

  1.化简:

  (1) ;    (2) ;

  (3)  ( );  (4)

www.jiaoxue51.com ( );

  (5) ;    (6) ( , );

  (7)   ( ).

  2.化简:

  (1) ;

  (2) ( );

  (3) ( , ).

  答案:

  1.(1)-30; (2) ; (3) ;

  (4) ; (5) ; (6) ; (7) .

  2.(1)2; (2)0; (3) .


希望二次根式的化简这篇文章对您有帮助哦,记得收藏本站。

与二次根式的化简相关的推荐

Tags:初二数学教案   根式 ,八年级数学教案,八年级数学下册教案,八年级数学上册教案
联系方式 | 收藏本站| 教学文章 | 试题课件下载 | 范文中心 | 作文网 | 在线阅读 | 名言语录 | 网站地图 | 热门专题
Copyright (C) jiaoxue51.com, All Rights Reserved 版权所有
小学美术课件,ppt课件免费下载,主题班会课件,说课课件,课件素材
1 2 3 4 5 6 7 8 9 10 11 12